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Closed-loop or feedback control ratchets use information about the state of the system to operate with the
aim of maximizing the performance of the system. In this paper we investigate the effects of a time delay in the
feedback for a protocol that performs an instantaneous maximization of the center-of-mass velocity. For the
one and the few particle cases the flux decreases with increasing delay, as an effect of the decorrelation of the
present state of the system with the information that the controller uses, but the delayed closed-loop protocol
succeeds to perform better than its open-loop counterpart provided the delays are smaller than the characteristic
times of the Brownian ratchet. For the many particle case, we also show that for small delays the center-of-
mass velocity decreases for increasing delays. However, for large delays we find the surprising result that the
presence of the delay can improve the performance of the nondelayed feedback ratchet and the flux can attain
the maximum value obtained with the optimal periodic protocol. This phenomenon is the result of the emer-
gence of a dynamical regime where the presence of the delayed feedback stabilizes one quasiperiodic solution
or several �multistability�, which resemble the solutions obtained in the so-called threshold protocol. Our
analytical and numerical results point towards the feasibility of an experimental implementation of a feedback
controlled ratchet that performs equal or better than its optimal open-loop version.
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I. INTRODUCTION

The ratchet effect consists of the emergence of a directed
transport in a spatially periodic system out of equilibrium
through the introduction of an external perturbation. The cel-
ebrated ideas of rectifying thermal noise, originally intro-
duced by Smoluchowski �1� and later resumed by Feynman
�2�, were explicitly used in the context of directed transport
in the 1990s �3–5�. Since then, these systems have been stud-
ied due to its importance from a theoretical point of view in
nonequilibrium physics �6� and its applications to many
other fields such as condensed matter or biology �6,7�.

One of the main ratchet types is the flashing ratchets that
operate switching on and off a spatially periodic asymmetric
potential. A simple periodic or random switching is able to
achieve a rectification of thermal fluctuations and produce a
net current of particles. Recently, a new class of control pro-
tocols that use instant information about the state of the sys-
tem to take the decision of switching on or off have been
introduced �8�. These so-called closed-loop or feedback con-
trol protocols have been proven to be an effective way to
increase the net current in collective Brownian ratchets
�8–10�. Feedback control can be implemented in systems
where particles are monitored �11,12�. This monitoring gives
information about the position of the particles that can be
used to switch on or off the potential in real time according

to a given protocol. For instance, in Ref. �11� the motion of
colloidal particles induced by a sawtooth dielectric potential,
which is turned on and off periodically, is experimentally
studied monitoring the particles. This suggests that a feed-
back controlled version of the ratchet in �11� can be con-
structed gathering information about the state of the system
with a charge coupled device �CCD� camera and using this
information to decide whether to turn on and off the potential
in real time. In addition, feedback ratchets have been re-
cently suggested as a mechanism to explain the stepping mo-
tion of the two-headed kinesin �13�.

All Brownian feedback ratchets considered until now use
instant information to operate, that is, they all measure the
state of the system and act instantaneously according to that
measurement. However, in realistic devices there is always a
time delay between the input measurements and the output
control action due to physical limitations to the velocity of
transmission and processing of the information �14,15�. For
example, in the construction of the feedback controlled ver-
sion of the ratchet in �11� time delays in the feedback will be
present due to the finite time needed to take a picture with a
CCD camera, transmit it, process it, and implement the re-
sulting decision of switching on or off the potential. There-
fore it is important to compute the effects of time delays in
the feedback because it clarifies in which real ratchet systems
it is experimentally feasible to obtain the increase of velocity
predicted in �8�. The study of time-delayed feedback is also
relevant because it appears naturally in many stochastic pro-
cesses, such as complex systems with self-regulating mecha-
nisms �16,17�. For another type of ratchets, deterministic
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feedback ratchets, some of the effects of time delay in the
feedback have been studied �18,19�.

In the current paper we investigate how a time delay in
the control of a feedback flashing ratchet affects the net flux.
In the next section we describe the ratchet model with the
time-delayed feedback control policy. In Sec. III we study in
detail the case of one particle, getting an effective potential
description for the flux in the relevant case of small time
delays. We also present an alternative approach to under-
standing the dependence of the flux with time delay in terms
of the covariance, and we describe the behavior for large
delays. In Sec. IV we treat the collective ratchet with few
particles and relate its center-of-mass velocity with the one
particle flux previously studied. In Sec. V we study the many
particle ratchet, which exhibits a somehow counterintuitive
behavior; first we briefly review the results for zero delays
that will be useful, and thereafter we expose the results in the
two dynamical regimes of small delays and large delays.
Finally, all the results are summarized and discussed in
Sec. VI.

II. MODEL

We consider N overdamped Brownian particles at tem-
perature T in a ratchet potential V�x�. The force acting on the
ith particle at position xi�t� is ��t�F(xi�t�), where F�x�
=−V��x� and ��t� implements the action of the controller.
Therefore the system dynamics is defined by the Langevin
equations

�ẋi�t� = ��t�F„xi�t�… + �i�t�; i = 1, . . . ,N , �1�

where � is the friction coefficient �related to the diffusion
coefficient D through Einstein’s relation D=kBT /�� and �i�t�
are Gaussian white noises of zero mean and variance
��i�t�� j�t���=2�kBT�ij��t− t��.

In order to study the effects of time-delayed feedback
controls let us include a time delay of value � in the control
of the paradigmatic maximization of the center-of-mass in-
stant velocity protocol �8�. The controller measures the sign
of the net force per particle

f�t� =
1

N
�
i=1

N

F„xi�t�… , �2�

and, after a time �, it switches on the potential ��=1� if the
net force was positive or it switches off ��=0� if it was
negative. Thus the control protocol reads

��t� = ��„f�t − ��… if t � � ,

0 otherwise,
	 �3�

with � the Heaviside function ���x�=1 if x	0, else ��x�
=0�.

Finally, to completely fix the model we choose a piece-
wise linear sawtooth potential V�x�=V�x+L� of height V0

and asymmetry parameter a
1 /2,

V�x� = 

V0

a

x

L
if 0 �

x

L
� a ,

V0 −
V0

1 − a
� x

L
− a� if a 


x

L
� 1.
 �4�

We have verified that the results found in this paper are valid
for other potentials provided they have the same height of
the potential V0 and the same asymmetry parameter a, with
V0 defined as the difference between the maximum and the
minimum values of the potential and aL as the distance be-
tween the minimum and the maximum positions. For this
verification we have considered the “smooth” potential

V�x� =
2V0

3�3
�sin�2�x

L
� +

1

2
sin�4�x

L
�� , �5�

which has potential height V0, period L, and asymmetry a
=1 /3. See Fig. 1.

In the study of these feedback ratchets it proves to be
useful to distinguish three cases: one particle, few particles,
and many particles. This classification is based on the results
of the zero delay studies �8–10�, which revealed different
characteristics and analytical approximations for each case.
The many particle case is formed by those feedback collec-
tive ratchets that for zero delay have net force fluctuations
smaller than the maximum absolute value of the net force;
see Refs. �8–10�.
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FIG. 1. �a� “Smooth” potential �Eq. �5�� for V0=5kBT. �b� “Saw-
tooth” potential �Eq. �4�� for V0=5kBT and a=1 /3. Units: L=1 and
kBT=1.
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Throughout the rest of this paper, we will use units where
L=1, kBT=1, and D=1.

III. ONE PARTICLE

In this section we discuss the simpler case of a ratchet
consisting of one particle, so that the position x�t� is gov-
erned by Eq. �1� with N=1 and ��t� given by Eq. �3�, which
is a nonlinear stochastic delay differential equation. In gen-
eral, there is no analytical treatment for these time-delayed
stochastic equations. Here, we shall write the corresponding
delay Fokker-Planck equation �20�, and use a perturbative
technique �17,21� to obtain an effective potential description
for small delays that leads to approximate analytical expres-
sions for the flux. Finally, in this section we shall get insight
in the regime of large delays by studying the covariance of
the sign of the net force.

The force that the particle feels with the inclusion of the
time delay � in the control �Eq. �3�� depends both on the
actual position xªx�t� and on the delayed position x�ªx�t
−��. This force F��x ,x�� is periodic in both arguments,
F��x ,x��=F��x+1,x��=F��x ,x�+1�, and reads

F��x,x�� =

0 if 0 � x� � a ,

− V0

a
if a 
 x� � 1 and 0 � x � a ,

V0

1 − a
if a 
 x� � 1 and a 
 x � 1.
 �6�

In particular, F��x ,x�¬F0�x� corresponds to the effective
force of the instant maximization control protocol without
delay �8�, i.e.,

F0�x� = 
0 if 0 � x � a ,

V0

1 − a
if a 
 x � 1. 
 �7�

In terms of the force �6�, the evolution of the position of the
particle obeys the stochastic delay differential equation

ẋ�t� = F�„x�t�,x�t − ��… + ��t� . �8�

The probability density 
�x , t� of this stochastic process sat-
isfies a delay Fokker-Planck equation �17,20–22�, which in-
volves the two-point probability density as follows:

�

�x

�x,t� = −

�

�x
� F��x,x��
�x,t;x�,t − ��dx� +

�2

�x2
�x,t� .

�9�

For small delays, this equation can be treated perturbatively;
then, following Refs. �17,21�, the explicit effective force for
small delays can be achieved by computing

Feff�x� =� F��x,x��P�x�,t + ��x,t�dx�, �10�

where the short time propagator P�x , t+� �x , t� �see Sec. 4.4.1
in Ref. �23�� is

P�x�,t + ��x,t� =
1

�2��
exp�−

�x� − x − F0�x���2

2�
� . �11�

Due to the Gaussian form of the propagator in this small
delay approximation, we can neglect the long tails of the
Gaussian propagator and restrict the integration in Eq. �10�
to the intervals �a−1,1� and �0,1+a� for 0�x�a and a

x�1, respectively. We get

Feff�x� = Feff�x + 1� =
−
V0

2a�erfc� x
�2�

� + erfc�a − x
�2�

�� if 0 � x � a ,

V0

2�1 − a��2 − erfc�1 − x −
V0�

1 − a
�2�

� − erfc� x − a +
V0�

1 − a
�2�

�� if a 
 x � 1,
 �12�

where erfc�x� is the complementary error function. On the
other hand, the value of the effective force can be computed
numerically by splitting in bins the position of the particle
and evaluating the probability of being in those bins. For
small delays, Eq. �12� gives a good estimation as shown in
Fig. 2.

The main effect of the inclusion of a small delay in the
control is a slant of the effective force near the points of
discontinuity. This effect lies on the idea that the closer the
particle is to the discontinuities, the more probable is that the
controller makes a mistake. For instance, when the particle is

to the left of x=a and close to it, there are two possibilities:
�i� if the retarded position was to the left too then the con-
troller sets the potential off, and �ii� if the retarded position
was to the right then the controller sets the potential on and
the particle feels a negative force −V0 /a. Therefore in the
points to the left of x=a and close to it the force takes an
effective value between 0 and −V0 /a, resulting in a negative
effective force.

In this effective description the position of the particle
evolves with a Langevin equation ẋ�t�=Feff�x�+��t�, with the
associated �nondelayed� effective Fokker-Planck equation
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�

�t

�x,t� = −

�

�x
�
�x,t�Feff�x�� +

�2

�x2
�x,t� , �13�

with periodic boundary conditions. The average velocity is
obtained computing the expectation value of the velocity in
the stationary distribution of the effective Fokker-Planck
equation �6�:

�ẋ� =
1 − eVeff�1�−Veff�0�

�
0

1

dx�
x

x+1

dyeVeff�y�−Veff�x�

, �14�

where Veff�x�=−�0
xFeff�s�ds. Integrating Feff�x� we get the ex-

pression of the approximate effective potential for small de-
lays Veff�x�,

Veff�x� =

V0

�2�

2a �ierfc� a
�2�

� + ierfc� x
�2�

� − ierfc�a − x
�2�

� −
1

��
� if 0 � x � a ,

V0
�2�

2�1 − a��2�a − x�
�2�

+ ierfc�1 − x −
V0�

1 − a
�2�

� − ierfc�1 − a −
V0�

1 − a
�2�

� + ierfc� V0�

1 − a
�2�

� − ierfc� x − a +
V0�

1 − a
�2�

��
� +

2�1 − a�
a

ierfc� a
�2�

� −
2�1 − a�

a��
� if a 
 x � 1,



�15�

in the interval �0,1�, and outside Veff�x�=Veff�y�+ �x
−y�Veff�1�, with y�x mod 1, y� �0,1�. The function ierfc is
the first iterated integral of the complementary error function
�24�,

ierfc�x� = �
x

�

erfc�s�ds = − x erfc�x� +
e−x2

��
. �16�

This effective potential is depicted in Fig. 3, where we see
that an increase of the delay implies a decrease of the aver-
age tilt of the potential. Eventually, the stationary flux is
calculated inserting Eq. �15� in Eq. �14�. The resulting ap-
proximate expression gives good results for very small de-
lays and a good estimate of the decrease rate for small de-
lays. See Fig. 4. �This can be understood noting that although
for some positions the corrections to the effective force are
appreciable already for quite small delays �see Fig. 2� this

only happens in small space intervals and therefore the re-
sults for the flux are better than expected.� The approximate
analytical expression obtained gives the average velocity in
terms of the main magnitudes of the system, namely, the
height of the potential V0, its asymmetry a, and the time
delay in the feedback �. We have checked that this result is in
good agreement also for other potentials.

Another approach can be taken to understand the ob-
served decrease in the flux for increasing delay. The instant
maximization protocol does not use detailed information
about the position of the particles, it simply deals with the
sign of the net force, namely, sgn f , �with sgn�x�=1 for x
	0, sgn�x�=0 for x=0, and sgn�x�=−1 for x
0�. The flux
performance of the protocol would be optimal if it would
have received the present sign of the net force, sgn f�t�, but it
does receive its value a time � earlier, sgn f�t−��. This ear-
lier value contains information about the present value be-
cause both values are correlated, as can be shown computing
the covariance

C̃��� ª ��sgn f�t� − ���sgn f�t − �� − ��� = C��� − �2,

�17�

where

C��� ª �sgn f�t�sgn f�t − ��� ,

� ª �sgn f�t�� = �sgn f�t − ��� . �18�

The decrease of the function C̃��� for increasing � �Fig. 5�
explains the decrease of the center-of-mass velocity as a con-
sequence of the loss of information about the present sign of
the net force. In addition, we can obtain an estimation of the
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FIG. 2. Effective force for small delays for potential height V0

=5kBT and asymmetry a=1 /3 in the one particle case �Eq. �12��.
Units: L=1, D=1, and kBT=1.

M. FEITO AND F. J. CAO PHYSICAL REVIEW E 76, 061113 �2007�

061113-4



flux decrease with the following heuristic argument. Let us
calculate the covariance using

C = P++ + P−− − P+− − P−+,

� = P++ − P−− + P+− − P−+, �19�

where Pij is the joint probability of having a positive
�i= + � or negative �i=−� net force at time t and a positive
�j= + � or negative �j=−� net force at time t−�. These prob-
abilities can be computed if we assume that the system per-
formance can be explained with the simplified description
that sgn f�t−�� is different from sgn f�t� with probability p.
This description allows us to use the results found in �25� for
the instantaneous maximization protocol with a controller
receiving sgn f�t� through a noisy channel with noise level p.
In fact, notice that the plot of the effective potential �Fig. 3�
resembles the form of the effective potential found in Ref.
�25� for the noisy channel. This elementary description gives
the values P−+=bp, P−−=b�1− p�, P+−= �1−b�p, and P++

= �1−b��1− p� for the joint probabilities, with b the probabil-
ity of sgn f�t� being negative. Thus Eqs. �19� can be rewrit-
ten in terms of the probability of error p= P+−+ P−+ and the
probability b= P−++ P−− as

C � 1 − 2p ,

� � 1 − 2b . �20�

In �25� it is shown that for small potential heights �small V0�
b�a and

�ẋ� � V0�1 − 2p� . �21�

Therefore this simplified description suggests

�ẋ� � V0C . �22�

For larger potential heights, a better estimation is obtained
evaluating the general expression �ẋ��p� of Ref. �25� at
p���= �1−C���� /2. This estimation is plotted in Fig. 4, where
it is compared with numerical results and the analytical small
delay approximation �Eqs. �14� and �15��.

The average velocity of the particle for large delays is not
zero, but reaches a constant value independent of the delay
�see Fig. 4�. We have seen that the function C��� also tends

to a constant nonzero value in the same characteristic time
that the velocity does, in qualitative agreement with the es-
timation described after Eq. �22�, although this estimation
does not give the correct value of the flux. Therefore this
estimation gives good quantitative results for small delays
and the qualitative behavior for large delays. The large �
behavior observed for the flux implies an effective force in-
dependent of the time delay � for large enough values of �, as
we show in Fig. 6. The average over x of the numerical large
� effective force is positive, in agreement with the positive
net flux obtained. For example, for asymmetry parameter a
=1 /3 and potential heights V0=1, 5, and 10, the net flux is
�ẋ��→��0.01, 0.12, and 0.18, respectively. The convergence
to this constant value can be understood realizing that the

covariance C̃ becomes negligible for large delays, i.e., the
fluctuations of sgn f around its mean value at t and at t−� are
independent. This indicates that the system dynamics is ef-
fectively the same as that for an open-loop control protocol,
as the correlation between the switches and the state of the
system are negligible.

Comparing the results for the delayed instant maximi-
zation protocol with the optimal periodic open-loop protocol,
we see that the former performs better than the latter even for
nonzero delay, provided the delay is smaller than the charac-
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teristic times of the dynamics of the Brownian ratchet.
Therefore the instant maximization protocol gives a larger
flux than the optimal open-loop control protocol for time
delays � such that ��Ton, ��Toff, where Ton��1−a�2 /V0

and Toff�a2 /2 are the on-potential and off-potential times in
the optimal periodic protocol �5�. See, for example, Fig. 4
and compare with �ẋ�open�0.3 that is the value for the opti-
mal periodic protocol for V0=5 and a=1 /3, which has Ton
�0.06 and Toff�0.05.

IV. FEW PARTICLES

In this section we deal with a collective ratchet com-
pounded of a few particles. We will show that the center-of-
mass velocity for the few particle case can be related with
the velocity obtained for the one particle ratchet studied in
the section before.

As in the one particle case, the effect of the inclusion of a
delay is a decrease in the covariance and in the center-of-
mass velocity �Fig. 7�. Therefore we can also interpret the
decrease in the center-of-mass velocity as a consequence of
the loss of information of the present sign of the net force,
and then assume that the system performance can be ex-
plained with the simplified description that sgn f�t−�� is dif-
ferent from sgn f�t� with probability p. This simplified de-
scription leads for small potential heights �25,26� to

CN��� � 1 − 2pN,

�N � 1 − 2bN,

�ẋcm�N �
V0�1 − 2pN�

�2�a�1 − a�N
�

V0CN

�2�a�1 − a�N
, �23�

where the subscript N denotes that the quantities are the val-
ues in the case of N particles. We have numerically found
that the function CN��� is approximately the same for any
number of particles in this regime of a few particles, and
CN�C. Thus we have the relation

�ẋcm�N��� �
�ẋ����

�2�a�1 − a�N
�24�

between the velocities for one and for N particles for a given
delay �. This Eq. �24� gives good results for small values of
the delay. In particular, inserting Eq. �14� in Eq. �24� we
obtain an analytical approximate expression for the case of
few particles in the regime of small delays.

We stress that, analogously to the zero delay case �8�, the
main effect of having a collective ratchet is a decrease in the
magnitude of the force fluctuations. This fact gives a center-
of-mass velocity inversely proportional to the square-root of
the number of particles, as Eq. �24� states. Thereby, if the
number N of particles increases, there will be a decrease of
the values of the delay that give better performances for the
delayed instant maximization protocol than for the optimal
periodic protocol.

On the other hand, for large time delays the analogy be-
tween the delayed protocol and the noisy channel protocol no
longer gives a good estimate. In this regime of large delays

the covariance C̃���=C���−�2 becomes negligible indicating
that sgn f�t−�� and sgn f�t� are nearly uncorrelated and that
the system effectively behaves as if it were driven by an
effective open-loop control protocol. In addition, we observe
that the value of the center-of-mass velocity becomes inde-
pendent of the number of particles �see Fig. 7�. This is a
hallmark of collective open-loop control ratchets, in which
the absence of feedback decouples the Langevin equations
provided the particles do not explicitly interact with each
other.

V. MANY PARTICLES

We study here the effects of time delays in the feedback
controlled Brownian ratchet described in Sec. II for the many
particle case, considering both the “smooth” potential and
the “sawtooth” potential for various potential heights and
different initial conditions.

We find that the system presents two regimes separated by
a delay �min for which the center-of-mass velocity has a mini-
mum; see Fig. 8. In the small delay regime ��
�min� the flux
decreases with increasing delays as one could expect. On the
contrary, in the large delay regime ��	�min� we have ob-
served and explained a surprising effect, namely, the center-
of-mass velocity increases for increasing delays and the sys-
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tem presents several stable solutions. We have found that this
critical time delay �min is inversely proportional to the poten-
tial height �min�1 /V0 with a proportionality constant that
mildly depends on the number of particles.

A. Zero delay

The many particle ratchet in absence of delay �i.e., �=0 in
the model of Sec. II� has been studied in Ref. �8�. It has been
shown that the net force per particle exhibits a quasideter-
ministic behavior that alternates large periods of time ton
with f�t�	0 �on dynamics� and large periods of time toff

with f�t�
0 �off dynamics�. The center-of-mass velocity can
be computed as

�ẋcm� =
�x�ton�
ton + toff

, �25�

with

�x�ton� = �xon�1 − e−ton/�2�ton�� , �26�

where �xon and �ton are obtained fitting the displacement
during the “on” evolution for an infinite number of particles
�see Ref. �10� for details�.

On the other hand, for many particles the fluctuations of
the net force are smaller than the maximum value of the net
force �see Fig. 9�. This allows the decomposition of the dy-
namics as the dynamics for an infinite number of particles
plus the effects of the fluctuations due to the finite value of
N. The late time behavior of the net force f�t� for an infinite
number of particles is given for the on and off dynamics by
�8�

f�
��t� = C�e−���t−��� with � = on, off. �27�

The coefficients C�, ��, and �� can be obtained fitting this
expression with the results obtained integrating a mean field
Fokker-Planck equation obtained in the limit N→� and
without delay; see Refs. �8,10� for details. For a finite num-
ber of particles the fluctuations in the force induce switches

of the potential and the times on and off are computed equat-
ing f�

� to the amplitude of the force fluctuations, resulting in
�8�

ton + toff = b + d ln N , �28�

with b=Con+Coff and d= ��on+�off� / �2�on�off�.

B. Small delays

For small delays, �
�min, we observe that the flux de-
creases with the delay. See Fig. 8. We have seen that this
decrease is slower than that found for the few particle case
�Sec. IV�, and that the expressions derived to describe this
decrease in the few particle case does not hold here. How-
ever, the decrease observed here can be understood noting
that a change in the sign of f�t� is perceived by the controller
a time � after, what delays the reaction of the system and
makes the tails of f�t� longer and implies an increase of the
time interval between switches. In addition, the form of f�t�
is less smooth than for no delay because the delayed reaction
of the controller allows several sign flips in the f�t� tails
before the system reacts. These sign flips give short epochs
of fast switches of the potential �between long on and off
epochs�, which lead to large fluctuations in f�t�. These large
fluctuations eventually destabilize these long period solu-
tions for ���min. See Fig. 10.
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As the main effect of the delay is to stretch the “on” and
“off” times of the dynamics, using the many particle approxi-
mation �8� we can write

�ẋcm� =
�xon

ton + toff + ��
=

�xon

b + d ln N + ��
, �29�

where we have found that the increase of the length of the
on-off cycle �� is proportional to the delay ����.

C. Large delays

After the minimum flux is reached for �=�min, the flux
begins to increase with the time delay �see Fig. 8�. This
increase is due to a change in the dynamical regime: for �
	�min the present net force starts to be nearly synchronized
with the net force a time � ago. This self-synchronization
gives rise to a quasiperiodic solution of period T=�. Note
that there is not a strict periodicity due to stochastic fluctua-
tions in the “on” and “off” times. Looking at the f�t� depen-
dence, Fig. 11, we see that the solutions stabilized by the
self-synchronization are similar to those obtained with the
threshold protocol �9,10�. In Fig. 8 we show that the thresh-
old protocol that has the same period gives similar center-of-
mass velocity values, confirming the picture. �Differences
are due to the fact that we have considered for the threshold
protocol simulations with on and off thresholds of the same
magnitude, while Fig. 11 shows that the effective thresholds
are different.�

This picture allows one to understand the increase of ve-
locity for increasing delay, and the presence of a maximum.
This maximum is related with the optimal values of the
thresholds that have been shown in �10� to give a quasiperi-
odic solution of period T=Ton+Toff, with Ton and Toff the
optimal “on” and “off” times of the periodic protocol. There-
fore if we know the values of Ton and Toff for the optimal
periodic protocol �Ton��1−a�2 /V0 and Toff�a2 /2� we can
predict that the maximum of the center-of-mass velocity is
reached for a delay

�max = Ton + Toff, �30�

and has a value

�ẋcm�closed��max� = �ẋcm�open
max , �31�

with �ẋcm�open
max the center-of-mass velocity for the optimal

open-loop protocol. Thus this expression gives the position
and height of the maximum of the delayed feedback control
protocol in terms of the characteristic values of the optimal
open-loop control. In particular, it implies that the position
and height of the maximum for the flux is independent of the
number of particles.

As an example we can apply these expressions to the
“smooth” potential with V0=5 that for the optimal periodic
protocol gives �ẋcm�=0.44 for Ton=0.06 and Toff=0.05, so we
obtain �max=0.06+0.05=0.11 in agreement with Fig. 8.

For values of the delay of the order of or larger than �max
quasiperiodic solutions of other periods start to be stable; see
Fig. 12. The periods for the net force f�t� that are found are
those that fit an integer number of periods inside a time
interval �, verifying that the present net force is synchronized
with the net force a time � ago, that is, the quasiperiodic
solutions have periods T=� /2, T=� /3, . . .. In addition, it can
be seen that the center-of-mass velocity of the n branch
�ẋcm��/n whose f�t� has period T=� /n is related with that of
the T=� branch through

�ẋcm��/n��� = �ẋcm����/n� . �32�

We highlight that several branches can be stable for the same
time delay �. Whether the system finally goes to one or an-
other stable solution depends on the initial conditions and on
the particular realization of the noise. See Figs. 12 and 13.
For these branches we have found initial conditions that go
to these solutions and that remain in them during several
thousands of periods, indicating that they are stable solutions
or at least metastable solutions with a large lifetime.

The analogy with the threshold protocol allows one to use
the analytic results of �10� to get further insight in the nu-
merical results. The behavior for large delays for the T=�
branch can be obtained using the relation

�ẋcm� =
�x���

�
, �33�

with �x��� given by Eq. �26�. This equation gives a good
prediction for the largest delays of the first branch �see Fig.
8�.
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On the other hand, for very large values of the delays of
the first branch the solutions in a given branch start to be-
come unstable, which can be understood noting that this hap-
pens when the fluctuations of the net force become of the
order of the absolute value of the net force. Thus the maxi-
mum delay that gives a stable solution in the first branch is

�inst = ton + toff = b + d ln N , �34�

where b and d are determined as in Eq. �28�. For example,
for the “smooth” potential with V0=5, which has b=−0.070
and d=0.031, we obtain for N=105 particles the value �inst
=0.29 in accordance with the numerical results shown in
Figs. 8 and 12. The previous results for the first branch, Eqs.
�33� and �34�, can be extended to other branches by direct
application of the relation �32�.

VI. CONCLUSIONS

In this paper we have faced a fundamental question intrin-
sically related with feedback Brownian ratchets, namely, the
effects of a time delay in such a feedback controlled stochas-
tic system. We have focused on the task of studying the
dependence of the flux with the time delay for both the case
of one particle and for the collective version of the ratchet
with few particles.

For one particle ratchets and small delays we have ob-
tained an effective potential which contains the basic ingre-
dients that come into play, and gives an approximate analyti-
cal expression for the flux. The effects of the delay in the
shape and the average slant of the effective potential allows
one to easily understand the decrease of the flux with in-
creasing delays. The approximate analytical expression ob-
tained �Eqs. �14� and �15�� gives the average velocity in
terms of the main magnitudes of the system: the height of the
potential V0, its asymmetry a, and the time delay in the feed-
back �. In particular, it allows one to obtain predictions of
the characteristic time scale of the decrease due to the delay.
This relation is also useful in the few particle case thanks to
the relation �24� found between the flux for the one and the
few particle cases.

The decrease of the covariance of the sign of the net force
for increasing delays provides an alternative approach to un-

derstand the dependence of the flux with the delay. This ap-
proach has given the relation between the covariance and the
flux, and has allowed us to relate the flux obtained in the few
particle case with the results of the one particle case �Eq.
�24��. In addition, the fact that the covariance becomes neg-
ligible for large delays indicates that the delayed control pro-
tocol effectively behaves as if it were an open-loop control
protocol. This results in a constant value of the flux for large
delays that is independent of the number of particles.

We want to stress as an important result of this paper that
the feedback controlled system for one or few particles is
able to perform better than its open-loop counterpart even for
nonzero time delays �provided the delays are smaller than the
characteristic times of the dynamics of the Brownian
ratchet�. Furthermore, even for arbitrarily large delays the net
flux does not vanish but it reaches a positive value, albeit it
performs worse than the optimal open-loop protocol. We also
highlight the importance of this study for realistic experi-
mental situations that necessarily have to face with time de-
lays. For the ratchet considered in �11� the colloidal particles
have diameter 0.25, 0.4, and 1 �m, and the sawtooth dielec-
tric potential has period L=50 �m and asymmetry a�1 /3.
The maximum velocities obtained with a periodic switching
were reported �11� to be of 0.2 �m /s with Ton�30 s and
Toff�50 s. As the trapping energy is significantly greater
than kT and a�1 /3 the introduction of feedback can in-
crease the velocity up to a factor �1 /2−a�−1�6 approxi-
mately �8,13�, attained when the time delay in the feedback
is negligible. The results obtained in this paper indicate that
for delays in the feedback smaller than the characteristic
times of the system �of order 10 s, i.e., of order 10−3 in the
adimensional units used throughout our paper� it is possible
to obtain velocities greater than the maximum of open-loop
protocols. The use of a conventional CCD camera �30 fps�
and conventional electronics is enough to achieve a feedback
control performance with a time delay of the order of
0.1 s �10−4 in adimensional units�, for this time delay an
increase of the velocity of a factor of 4 is expected. This
points towards the feasibility of implementing experimen-
tally a feedback controlled ratchet that performs better than
its optimal open-loop version.

We have also studied the effects of time delays in the
many particle case, where surprising and interesting results
arise. Although in the many particle case without delay the
instantaneous maximization protocol performs worse than
the optimal open-loop protocol, the introduction of a delay
can increase the center-of-mass velocity up to the values
given by the optimal open-loop control protocol. For small
delays the asymptotic average velocity decreases for increas-
ing delays, until it reaches a minimum. After this minimum,
a change of regime happens and the system enters a self-
synchronized dynamics with the net force at present highly
correlated with the delayed value of the net force used by the
controller. This self-synchronization stabilizes several of the
quasiperiodic solutions that can fit an integer number of pe-
riods in a time interval of the length of the time delay. The
stable quasiperiodic solutions have a structure similar to
those solutions appearing in the threshold protocol. This
analogy has allowed us to make numerical and analytical
predictions using the previous results for the threshold pro-
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tocol �10�. In particular, we have established the location and
value of the maximum, and also the value of the time delay
beyond which a quasiperiodic solution becomes unstable.
The results obtained show that for most time delays several
solutions are stable and therefore the systems present multi-
stability; which stable solution is reached depends on the
past history of the system. The possibility to choose the qua-
siperiod of the solution we want to stabilize just tuning the
time delay can have potential applications to easily control
the particle flux. Note that we can even leave some branch
just going to time delays where the branch is already un-
stable, and force the system to change to another branch of
solutions.

In summary, we have studied the effects of time delays in
the feedback control of a flashing ratchet. The results for one

and few particles point towards the feasibility of an experi-
mental implementation of a feedback controlled ratchet that
performs better than its optimal open-loop version. On the
other hand, the many particle case presents an unexpected
improvement of the flux due to the stabilization of one or
more quasiperiodic solutions for large enough delays.
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